Form No. T611

Dept. of Electrical Engineering
 Second Exam, Summer Semester: 2014/2015

Course Title: Instrumentation and Measurement	Date: 20/8/2015
Course No: $\quad(\mathbf{6 1 0 3 3 2})$	Time Allowed: 50 Minutes
Lecturer: $\mathbf{D r}$. Mohammad Abu-Naser	No. of Pages: 1

Question 1:
(10Mark)
Objectives: This question is related to oscilloscope

1) Name all components of oscilloscope shown in the following figure

2) An oscilloscope is used to display the output from frequency generator whose frequency dial is set at 1 kHz producing 7.07 Vrms . If the volt/div knob is 5 volt/div and the time/div knob is $200 \mu \mathrm{sec} / \mathrm{div}$.
a) Determine the number of vertical divisions occupied by the signal peak-to-peak.
b) Determine the number of horizontal divisions per one full cycle.
c) Sketch the output display for the signal.
3) Choose the correct answer
A) The property of phosphorus to emit light in the visual spectrum after absorbing the kinetic energy of electrons is called:
a) Fluorescence
b) Phosphorescence
c) Luminance
d) none of the above.
B) Relatively \qquad are required by cathode ray tube for acceleration of electron beam.
a) few thousand volts
b) few hundred volts
c) very few volts
d) none of the above
C) Best phosphor type to be used in CRT of oscilloscopes is:
a) P 7
b) P11
c) P31
d) P33

Question 2: (10Mark)
Objectives: This question is related to bridge measurements
A 50 Hz bridge has the following constants: Arm1: $\mathrm{R}_{1}=1000 \Omega$. Arm2: $\mathrm{R}_{2}=50 \Omega$ in parallel with $\mathrm{L}_{2}=0.1 \mathrm{H}$. Arm4: $\mathrm{R}_{4}=100 \Omega$. Find the constants of Arm3.
a) Express the result as a pure resistance in series with a pure inductance or capacitance.
b) Express the result as a pure resistance in parallel with a pure inductance or capacitance.

Instramentation and Measurement
Second Exam
Sumper Semester $2014 / 2015$
21

1) 2. Uertial amplifier
2. Trigger circuit
3. Tine base geneator
4. Horizond amplifien
5. Electrangun
2) a. $V_{m b}=7.07 \mathrm{~V}$

$$
\begin{aligned}
& V_{m}=\sqrt{2} \times 7.07=10 \mathrm{~V} \\
& v_{p}=20 V \\
& \text { number of mertical divisions }=\frac{\text { Vef }}{\text { volts/division }} \quad \frac{20 \mathrm{~V}}{5 \mathrm{~V}}=4 \text { divisionn }
\end{aligned}
$$

b. $f=1000 \mathrm{~Hz}, T, \frac{1}{f}, \operatorname{las}$

$$
\text { number of hacizal divirions }=\frac{T}{\text { time/div }}, \frac{\operatorname{lng}}{200 \mathrm{~ms}}=T \text { divisios }
$$

3) A. Fluorescence

B- Kow thounand valls
C. P_{31}

Q 2

$$
\begin{aligned}
& Z_{1} \leq 1000 \Omega \\
& z_{2}=50 H j, 100 \pi \times 0.1-50 / j ; 10 \pi=14.15+j 22.5 \\
& Z_{4}=100 \Omega \\
& z_{1} z_{4}=z_{2} z_{3} \Rightarrow z_{3}-\frac{z_{1} z_{4}}{z_{2}}=2000-j 3183 \Omega \\
& \text { a) } R_{33}=20000 \Omega \\
& 3183=\frac{1}{100 \pi \times C_{35}} \Rightarrow C_{3,}=\frac{1}{100 \pi \times 3183}=1 F
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } Y_{3}-\frac{1}{z_{3}}=14 \times 10^{-4}+1.25 \times 10^{-4} \\
& \rightarrow R_{3 p}=\frac{1}{1.4 \times 10^{-4}}=7066 \Omega \\
& 2.25 \times 10^{-4}=100 \pi C_{3 p} \rightarrow C_{3 p}=0717 \mathrm{H}_{4} \mathrm{~F}
\end{aligned}
$$

